464 research outputs found

    Relativistic Jets and Long-Duration Gamma-ray Bursts from the Birth of Magnetars

    Full text link
    We present time-dependent axisymmetric magnetohydrodynamic simulations of the interaction of a relativistic magnetized wind produced by a proto-magnetar with a surrounding stellar envelope, in the first 10\sim 10 seconds after core collapse. We inject a super-magnetosonic wind with E˙=1051\dot E = 10^{51} ergs s1^{-1} into a cavity created by an outgoing supernova shock. A strong toroidal magnetic field builds up in the bubble of plasma and magnetic field that is at first inertially confined by the progenitor star. This drives a jet out along the polar axis of the star, even though the star and the magnetar wind are each spherically symmetric. The jet has the properties needed to produce a long-duration gamma-ray burst (GRB). At 5\sim 5 s after core bounce, the jet has escaped the host star and the Lorentz factor of the material in the jet at large radii 1011\sim 10^{11} cm is similar to that in the magnetar wind near the source. Most of the spindown power of the central magnetar escapes via the relativistic jet. There are fluctuations in the Lorentz factor and energy flux in the jet on 0.010.1\sim 0.01-0.1 second timescale. These may contribute to variability in GRB emission (e.g., via internal shocks).Comment: 5 pages, 3 figures, accepted in MNRAS letter, presented at the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin

    Osmotic pressures of sea water solutions computed from experimental vapor pressure lowering

    Get PDF
    Osmotic pressures of sea water solutions for temperatures between O and 35°C and for chlorinities between 5 and 100 ‰ have been computed from experimental vapor pressure measurements

    Experimentally Observed Instability of a Laminar Ekman Flow in a Rotating Basin

    Get PDF
    In studying the axi-symmetric flow induced by source-sink distributions in a rotating cylindrical basin in the absence of radial barriers, a highly organized pattern of instability has been observed in the laminar Ekman layer along the bottom of the basin. The instability manifests itself in the form of almost perfectly concentric cylindrical sheets or curtains of water which rise as sharply defined vertical jets from the Ekman layer and penetrate the entire depth of fluid. A less sharply defined downward motion between the curtains completes the circulation celis thus developed. At some maximum critical radius, the curtains usually disappear, and the flow at larger radii is a stable, laminar Ekman flow. Quantitative observations of ring spacing and critical radius are reported for experiments in which angular velocity, flow rate, viscosity and total depth of water were varied over experimentally available ranges

    Magnetar Driven Bubbles and the Origin of Collimated Outflows from GRBs

    Full text link
    We model the interaction between the wind from a newly formed rapidly rotating magnetar and the surrounding progenitor. In the first few seconds after core collapse the magnetar inflates a bubble of plasma and magnetic fields behind the supernova shock, which expands asymmetrically because of the pinching effect of the toroidal magnetic field, as in PWNe, even if the host star is spherically symmetric. The degree of asymmetry depends on the ratio of the magnetic energy to the total energy in the bubble. We assume that the wind by newly formed magnetars inflating these bubbles is more magnetized than for PWNe. We show that for a magnetic to total power supplied by the central magnetar 0.1\sim 0.1 the bubble expands relatively spherically while for values greater than 0.3, most of the pressure in the bubble is exerted close to the rotation axis, driving a collimated outflow out through the host star. This can account for the collimation inferred from observations of long-duration gamma-ray bursts (GRBs). Given that the wind magnetization increases in time, we thus suggest that the magnetar-driven bubble initially expands relatively spherically (enhancing the energy of the associated supernova) while at late times it becomes progressivelymore collimated (producing the GRB). Similar processes may operate in more modestly rotating neutron stars to produce asymmetric supernovae and lower energy transients such as X-ray flashes.Comment: Proceeding of the conference "Astrophysics of Compact Objects", 1-7 July, Huangshan, Chin

    Understanding and Affecting Student Reasoning About Sound Waves

    Get PDF
    Student learning of sound waves can be helped through the creation of group-learning classroom materials whose development and design rely on explicit investigations into student understanding. We describe reasoning in terms of sets of resources, i.e. grouped building blocks of thinking that are commonly used in many different settings. Students in our university physics classes often used sets of resources that were different from the ones we wish them to use. By designing curriculum materials that ask students to think about the physics from a different view, we bring about improvement in student understanding of sound waves. Our curriculum modifications are specific to our own classes, but our description of student learning is more generally useful for teachers. We describe how students can use multiple sets of resources in their thinking, and raise questions that should be considered by both instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for publication in the International Journal of Science Educatio

    Time Variability in the X-ray Nebula Powered by Pulsar B1509-58

    Full text link
    We use new and archival Chandra and ROSAT data to study the time variability of the X-ray emission from the pulsar wind nebula (PWN) powered by PSR B1509-58 on timescales of one week to twelve years. There is variability in the size, number, and brightness of compact knots appearing within 20" of the pulsar, with at least one knot showing a possible outflow velocity of ~0.6c (assuming a distance to the source of 5.2 kpc). The transient nature of these knots may indicate that they are produced by turbulence in the flows surrounding the pulsar. A previously identified prominent jet extending 12 pc to the southeast of the pulsar increased in brightness by 30% over 9 years; apparent outflow of material along this jet is observed with a velocity of ~0.5c. However, outflow alone cannot account for the changes in the jet on such short timescales. Magnetohydrodynamic sausage or kink instabilities are feasible explanations for the jet variability with timescale of ~1.3-2 years. An arc structure, located 30"-45" north of the pulsar, shows transverse structural variations and appears to have moved inward with a velocity of ~0.03c over three years. The overall structure and brightness of the diffuse PWN exterior to this arc and excluding the jet has remained the same over the twelve year span. The photon indices of the diffuse PWN and possibly the jet steepen with increasing radius, likely indicating synchrotron cooling at X-ray energies.Comment: accepted to ApJ, 14 pages, 8 figure

    Theory of high-energy emission from the pulsar/Be-star system PSR 1259-63 I: radiation mechanisms and interaction geometry

    Full text link
    We study the physical processes of the PSR B1259-63 system containing a 47 ms pulsar orbiting around a Be star in a highly eccentric orbit. Motivated by the results of a multiwavelength campaign during the January 1994 periastron passage of PSR B1259-63, we discuss several issues regarding the mechanism of high-energy emission. Unpulsed power law emission from the this system was detected near periastron in the energy range 1-200 keV. We find that the observed high energy emission from the PSR B1259-63 system is not compatible with accretion or propeller-powered emission. Shock-powered high-energy emission produced by the pulsar/outflow interaction is consistent with all high energy observations. By studying the evolution of the pulsar cavity we constrain the magnitude and geometry of the mass outflow outflow of the Be star. The pulsar/outflow interaction is most likely mediated by a collisionless shock at the internal boundary of the pulsar cavity. The system shows all the characteristics of a {\it binary plerion} being {\it diffuse} and {\it compact} near apastron and periastron, respectively. The PSR B1259-63 cavity is subject to different radiative regimes depending on whether synchrotron or inverse Compton (IC) cooling dominates the radiation of electron/positron pairs advected away from the inner boundary of the pulsar cavity. The highly non-thermal nature of the observed X-ray/gamma-ray emission near periastron establishes the existence of an efficient particle acceleration mechanism within a timescale shown to be less than 102103\sim 10^2-10^3 s. A synchrotron/IC model of emission of e\pm-pairs accelerated at the inner shock front of the pulsar cavity and adiabatically expanding in the MHD flow provides an excellent explanation of the observed time variableX-ray flux and spectrum from the PSRComment: 68 pages, accepted for publication in the Astrophys. J. on Aug. 26, 199

    A Tale of Two Current Sheets

    Full text link
    I outline a new model of particle acceleration in the current sheet separating the closed from the open field lines in the force-free model of pulsar magnetospheres, based on reconnection at the light cylinder and "auroral" acceleration occurring in the return current channel that connects the light cylinder to the neutron star surface. I discuss recent studies of Pulsar Wind Nebulae, which find that pair outflow rates in excess of those predicted by existing theories of pair creation occur, and use those results to point out that dissipation of the magnetic field in a pulsar's wind upstream of the termination shock is restored to life as a viable model for the solution of the "σ\sigma" problem as a consequence of the lower wind 4-velocity implied by the larger mass loading.Comment: 17 pages, 6 figures, Invited Review, Proceedings of the "ICREA Workshop on The High-Energy Emission from Pulsars and their Systems", Sant Cugat, Spain, April 12-16, 201

    Pulsar Magnetospheric Emission Mapping: Images and Implications of Polar-Cap Weather

    Get PDF
    The beautiful sequences of ``drifting'' subpulses observed in some radio pulsars have been regarded as among the most salient and potentially instructive characteristics of their emission, not least because they have appeared to represent a system of subbeams in motion within the emission zone of the star. Numerous studies of these ``drift'' sequences have been published, and a model of their generation and motion articulated long ago by Ruderman & Sutherland (1975); but efforts thus far have failed to establish an illuminating connection between the drift phemomenon and the actual sites of radio emission. Through a detailed analysis of a nearly coherent sequence of ``drifting'' pulses from pulsar B0943+10, we have in fact identified a system of subbeams circulating around the magnetic axis of the star. A mapping technique, involving a ``cartographic'' transform and its inverse, permits us to study the character of the polar-cap emission ``map'' and then to confirm that it, in turn, represents the observed pulse sequence. On this basis, we have been able to trace the physical origin of the ``drifting-subpulse'' emission to a stably rotating and remarkably organized configuration of emission columns, in turn traceable possibly to the magnetic polar-cap ``gap'' region envisioned by some theories.Comment: latex with five eps figure
    corecore